Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
BMC Ecol Evol ; 24(1): 55, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664688

RESUMEN

BACKGROUND: Sex differences in mitochondrial function have been reported in multiple tissue and cell types. Additionally, sex-variable responses to stressors including environmental pollutants and drugs that cause mitochondrial toxicity have been observed. The mechanisms that establish these differences are thought to include hormonal modulation, epigenetic regulation, double dosing of X-linked genes, and the maternal inheritance of mtDNA. Understanding the drivers of sex differences in mitochondrial function and being able to model them in vitro is important for identifying toxic compounds with sex-variable effects. Additionally, understanding how sex differences in mitochondrial function compare across species may permit insight into the drivers of these differences, which is important for basic biology research. This study explored whether Caenorhabditis elegans, a model organism commonly used to study stress biology and toxicology, exhibits sex differences in mitochondrial function and toxicant susceptibility. To assess sex differences in mitochondrial function, we utilized four male enriched populations (N2 wild-type male enriched, fog-2(q71), him-5(e1490), and him-8(e1498)). We performed whole worm respirometry and determined whole worm ATP levels and mtDNA copy number. To probe whether sex differences manifest only after stress and inform the growing use of C. elegans as a mitochondrial health and toxicologic model, we also assessed susceptibility to a classic mitochondrial toxicant, rotenone. RESULTS: We detected few to no large differences in mitochondrial function between C. elegans sexes. Though we saw no sex differences in vulnerability to rotenone, we did observe sex differences in the uptake of this lipophilic compound, which may be of interest to those utilizing C. elegans as a model organism for toxicologic studies. Additionally, we observed altered non-mitochondrial respiration in two him strains, which may be of interest to other researchers utilizing these strains. CONCLUSIONS: Basal mitochondrial parameters in male and hermaphrodite C. elegans are similar, at least at the whole-organism level, as is toxicity associated with a mitochondrial Complex I inhibitor, rotenone. Our data highlights the limitation of using C. elegans as a model to study sex-variable mitochondrial function and toxicological responses.


Asunto(s)
Caenorhabditis elegans , ADN Mitocondrial , Mitocondrias , Caracteres Sexuales , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Masculino , Femenino , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN Mitocondrial/efectos de los fármacos
2.
Food Chem Toxicol ; 182: 114108, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890762

RESUMEN

Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and have been found in indoor house dust and in children's polyester apparel. Azobenzene disperse dyes are implicated as potentially allergenic; however, little experimental data is available on allergenicity of these dyes. Here, we examine the binding of azobenzene disperse dyes to nucleophilic peptide residues as a proxy for their potential reactivity as electrophilic allergenic sensitizers. The Direct Peptide Reactivity Assay (DPRA) was utilized via both a spectrophotometric method and a high-performance liquid chromatography (HPLC) method. We tested dyes purified from commercial dyestuffs as well as several known transformation products. All dyes were found to react with nucleophilic peptides in a dose-dependent manner with pseudo-first order kinetics (rate constants as high as 0.04 h-1). Rates of binding reactivity were also found to correlate to electrophilic properties of dyes as measured by Hammett constants and electrophilicity indices. Reactivities of polyester shirt extracts were also tested for DPRA activity and the shirt extracts with high measured abundances of azobenzene disperse dyes were observed to induce greater peptide reactivity. Results suggest that azobenzene disperse dyes may function as immune sensitizers, and that clothing containing these dyes may pose risks for skin sensitization.


Asunto(s)
Colorantes , Péptidos , Niño , Humanos , Colorantes/toxicidad , Péptidos/química , Piel/metabolismo , Alérgenos/toxicidad , Alérgenos/química , Poliésteres
3.
Environ Pollut ; 337: 122491, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37709124

RESUMEN

Azobenzene disperse dyes are the fastest-growing category of commercial dyestuffs and are implicated in the literature as potentially allergenic. In the indoor environment, these dyes may be shed from various textiles, including clothing and upholstery and accumulate in dust particles potentially leading to exposure in young children who have higher exposure to chemicals associated with dust due to their crawling and mouthing behaviors. Children may be more vulnerable to dye exposure due to their developing immune systems, and therefore, it is critical to characterize azobenzene disperse dyes in children's home environments. Here, we investigate azobenzene disperse dyes and related compounds in house dust samples (n = 124) that were previously analyzed for flame retardants, phthalates, pesticides and per- and polyfluoroalkyl substances (PFAS). High-resolution mass spectrometry was used to support both targeted and suspect screening of dyes in dust. Statistical analyses were conducted to determine if dye concentrations were related to demographic information. Detection frequencies for 12 target dyes ranged from 11% to 89%; of the dyes that were detected in at least 50% of the samples, geometric mean levels ranged from 32.4 to 360 ng/g. Suspect screening analysis identified eight additional high-abundance azobenzene compounds in dust. Some dyes were correlated to numerous flame retardants and several antimicrobials, and statistically higher levels of some dyes were observed in homes of non-Hispanic Black mothers than in homes of non-Hispanic white mothers. To our knowledge, this is the most comprehensive study of azobenzene disperse dyes in house dust to date. Future studies are needed to quantify additional dyes in dust and to examine exposure pathways of dyes in indoor environments where children are concerned.


Asunto(s)
Contaminación del Aire Interior , Retardadores de Llama , Niño , Humanos , Preescolar , Polvo/análisis , Retardadores de Llama/análisis , Contaminación del Aire Interior/análisis , Compuestos Azo/análisis , Exposición a Riesgos Ambientales/análisis
4.
Environ Sci Technol ; 57(25): 9119-9129, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37319372

RESUMEN

Over the past 50 years, there has been a tremendous expansion in the measurement of chemical contaminants in environmental media. But how many chemicals have actually been determined, and do they represent a significant fraction of substances in commerce or of chemicals of concern? To address these questions, we conducted a bibliometric survey to identify what individual chemicals have been determined in environmental media and their trends over the past 50 years. The CAplus database of CAS, a Division of the American Chemical Society, was searched for indexing roles "analytical study" and "pollutant" yielding a final list of 19,776 CAS Registry Numbers (CASRNs). That list was then used to link the CASRNs to biological studies, yielding a data set of 9.251 × 106 total counts of the CASRNs over a 55 year period. About 14,150 CASRNs were substances on various priority lists or their close analogs and transformation products. The top 100 most reported CASRNs accounted for 34% of the data set, confirming previous studies showing a significant bias toward repeated measurements of the same substances due to regulatory needs and the challenges of determining new, previously unmeasured, compounds. Substances listed in the industrial chemical inventories of Europe, China, and the United States accounted for only about 5% of measured substances. However, pharmaceuticals and current use pesticides were widely measured accounting for 50-60% of total CASRN counts for the period 2000-2015.


Asunto(s)
Contaminantes Ambientales , Estados Unidos , Contaminantes Ambientales/análisis , Bibliometría , Comercio , Industrias , Bases de Datos Factuales
5.
Anal Chem ; 95(13): 5484-5488, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36946571

RESUMEN

Fluorine nuclear magnetic resonance (19F-NMR) spectroscopy has been shown to be a powerful tool capable of quantifying the total per- and polyfluoroalkyl substances (PFAS) in a complex sample. The technique relies on the characteristic terminal -CF3 shift (-82.4 ppm) in the alkyl chain for quantification and does not introduce bias due to sample preparation or matrix effects. Traditional quantitative analytical techniques for PFAS, such as liquid chromatography-mass spectrometry (LC-MS) and combustion ion chromatography (CIC), contain inherent limitations that make total fluorine analysis challenging. Here, we report a sensitive 19F-NMR method for the analysis of total PFAS, with a limit of detection of 99.97 nM, or 50 µg/L perfluorosulfonic acid. To demonstrate the capabilities of 19F-NMR, the technique was compared to two commonly used methods for PFAS analysis: total oxidizable precursor (TOP) assay and LC-high resolution MS analysis for targeted quantification and suspect screening. In both cases, the 19F-NMR analyses detected higher total PFAS quantities than either the TOP assay (63%) or LC-MS analyses (65%), suggesting that LC-MS and TOP assays can lead to underreporting of PFAS. Importantly, the 19F-NMR detected trifluoroacetic acid at a concentration more than five times the total PFAS concentration quantified using LC-MS in the wastewater sample. Therefore, the use of 19F-NMR to quantify the total PFAS in highly complex samples can be used to complement classic TOP or LC-MS approaches for more accurate reporting of PFAS contamination in the environment.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Flúor/química , Ácido Trifluoroacético , Cromatografía Liquida , Espectroscopía de Resonancia Magnética/métodos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 56(2): 1162-1173, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34985261

RESUMEN

Anti-fog sprays and solutions are used on eyeglasses to minimize the condensation of water vapor, particularly while wearing a mask. Given their water-repellent properties, we sought to characterize per- and polyfluorinated alkyl substance (PFAS) compounds in four anti-fog spray products, five anti-fog cloth products, and two commercial fluorosurfactant formulations suspected to be used in preparing anti-fog products. Fluorotelomer alcohols (FTOHs) and fluorotelomer ethoxylates (FTEOs) were detected in all products and formulations. While 6:2 FTOH and the 6:2 FTEO polymeric series were predominant, one anti-fog cloth and one formulation contained 8:2, 10:2, 12:2, 14:2, and 16:2 FTOH and FTEO polymeric series. PFAS concentrations varied in samples and were detected at levels up to 25,000 µg/mL in anti-fog sprays and 185,000 µg (g cloth)-1 in anti-fog cloth products. The total organic fluorine (TOF) measurements of anti-fog products ranged from 190 to 20,700 µg/mL in sprays and 44,200 to 131,500 µg (g cloth)-1 in cloths. Quantified FTOHs and FTEOs accounted for 1-99% of TOF mass. In addition, all four anti-fog sprays and both commercial formulations exhibited significant cytotoxicity and adipogenic activity (either triglyceride accumulation and/or pre-adipocyte proliferation) in murine 3T3-L1 cells. Results suggest that FTEOs are a significant contributor to the adipogenic activity exhibited by the anti-fog sprays. Altogether, these results suggest that FTEOs are present in commercial products at toxicologically relevant levels, and more research is needed to fully understand the health risks from using these PFAS-containing products.


Asunto(s)
Fluorocarburos , Alcoholes , Animales , Flúor , Ratones
7.
Sci Total Environ ; 789: 147823, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082211

RESUMEN

On-site sewage treatment systems can be an important source of antibiotic resistant bacteria and organic micropollutants into adjacent groundwater. Due to the frequent proximity of private wells to septic systems, this contamination is a concern to communities that do not have access to public municipal services. In both rural and urban environments, low-income communities, indigenous communities and those of color are disproportionately affected by well contamination. The objective of this study was to assess well water quality in an underserved North Carolina community by performing a comprehensive evaluation of microbial and organic micropollutant occurrence and determining possible sources of contamination. Well water, septic tanks, and adjacent municipal water were sampled. Culture- and molecular biology-based microbial analysis and non-targeted, high resolution mass spectrometry chemical analysis were conducted to assess water quality in comparison to nearby municipal water. Three of thirteen homes had between 1 and 6.3 CFUs/100 mL of E. coli and two homes had fecal bacteria resistant to antibiotics in their well water. The water of four homes showed concentrations of the artificial sweetener sucralose, a wastewater tracer, higher than the municipal water (range ~ 60-1500 ng L-1). The human-specific HF183 fecal marker was detected in 79% of the wells tested. The presence of pharmaceuticals and personal care products in four home wells, along with the presence of pesticides and insecticides in two homes, suggest possible contamination from septic tanks and lawn care runoff. The implications of this work highlight the necessity of wider scale contaminant evaluation of well water.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Escherichia coli , Cromatografía de Gases y Espectrometría de Masas , Humanos , North Carolina , Calidad del Agua
8.
Environ Pollut ; 287: 117299, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34023658

RESUMEN

Azobenzene disperse dyes are the fastest-growing class of dyestuffs, yet little is known about dye occurrences, sources, and transformations; azo dyes are also underrepresented in chemical standard catalogs, molecular databases, and mass spectral libraries. Many azo dyes are known to have sensitization, mutagenic, and carcinogenic properties. To fill these knowledge gaps, azo dyes were purified from dyestuffs by Soxhlet extraction and flash chromatography and characterized using ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode, as well as by 1H and 13C NMR. Data were analyzed to identify likely chemical formulas and structures using a weight-of-evidence approach with multiple open-source, in silico computational mass spectrometry tools. Nineteen total azobenzene dyes were detected in dyestuffs via a non-targeted analysis approach; the azobenzene dyes Disperse Blue 79:1, Disperse Blue 183:1, Disperse Orange 44, Disperse Orange 73, Disperse Red 50, Disperse Red 73, and Disperse Red 354 were purified from raw dyestuffs. Samples of children's polyester clothing were then analyzed likewise. In clothing, 21 azobenzene disperse dyes were detected, 12 of which were confirmed and quantified via reference standards. Individual dyes in apparel were quantified at concentrations up to 9230 µg dye/g shirt, with geometric means ranging 7.91-300 µg dye/g shirt. Total dye load in apparel was quantified at up to 11,430 µg dye/g shirt. This research supported the development of reference standards and library mass spectra for azobenzene disperse dyes previously absent from standard and spectral libraries. By analyzing the scope and quantities of azo dyes in children's polyester apparel, this study will facilitate a more robust understanding of sources of these potentially allergenic and mutagenic compounds.


Asunto(s)
Colorantes , Poliésteres , Compuestos Azo , Niño , Vestuario , Humanos
9.
Anal Bioanal Chem ; 413(14): 3763-3774, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33846826

RESUMEN

Glyphosate is currently the most widely used herbicide in the world; however, the zwitterionic and highly polar properties of glyphosate make current pesticide analysis methods unsuitable for its trace analysis in natural waters. Additionally, current glyphosate analysis methods do not account for waters of varying hardness, which is vital as glyphosate can complex with cationic species such as Ca2+ and Mg2+ in the environment. We detail here a robust LC-MS/MS method for the quantitation of glyphosate and its primary transformation product aminomethylphosphonic acid (AMPA) in environmental waters of varying water hardness. Chromatographic separation was achieved with a reversed-phase and weak anion-exchange mixed-mode column. We found that the addition of EDTA into hard water samples increases the response of both glyphosate and AMPA in the mass spectrometer. Limits of detection of 0.23 and 0.30 µg L-1 for glyphosate and AMPA in EDTA-amended hard water were achieved, respectively. We have demonstrated that the accuracy of the method was consistent over a wide range of water hardness levels up to a maximum of ~340 mg mL-1 CaCO3 hardness. We validated the method using matrix fortification of uncontaminated environmental samples from US river water. We then demonstrated that the method was successful at quantifying glyphosate and AMPA across surface and drinking water samples of varying water hardness from North Carolina and Sri Lanka. Measured concentrations of glyphosate and AMPA ranged from 1.6 to 13 µg L-1 and 0.50 to 2.5 µg L-1, respectively. This study represents a significant increase in sensitivity for LC-MS/MS analysis of glyphosate in hard water systems. Graphical abstract.

10.
Environ Sci Process Impacts ; 23(3): 429-445, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33656498

RESUMEN

A comprehensive, non-targeted analysis of polar organic pollutants using high resolution/accurate mass (HR/AM) mass spectrometry approaches has been applied to water samples from San Francisco (SF) Bay, a major urban estuary on the western coast of the United States, to assess occurrence of emerging contaminants and inform future monitoring and management activities. Polar Organic Chemical Integrative Samplers (POCIS) were deployed selectively to evaluate the influence of three contaminant pathways: urban stormwater runoff (San Leandro Bay), wastewater effluent (Coyote Creek, Lower South Bay), and agricultural runoff (Napa River). Grab samples were collected before and after deployment of the passive samplers to provide a quantitative snapshot of contaminants for comparison. Composite samples of wastewater effluent (24 hours) were also collected from several wastewater dischargers. Samples were analyzed using liquid-chromatography coupled to high resolution mass spectrometry. Resulting data were analyzed using a customized workflow designed for high-fidelity detection, prioritization, identification, and semi-quantitation of detected molecular features. Approximately 6350 compounds were detected in the combined data set, with 424 of those compounds tentatively identified through high quality spectral library match scores. Compounds identified included ethoxylated surfactants, pesticide and pharmaceutical transformation products, polymer additives, and rubber vulcanization agents. Compounds identified in samples were reflective of the apparent sources and pathways of organic pollutant inputs, with stormwater-influenced samples dominated by additive chemicals likely derived from plastics and vehicle tires, as well as ethoxylated surfactants.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Ríos , Contaminantes Químicos del Agua/análisis
11.
Anal Chem ; 93(5): 2820-2827, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33496574

RESUMEN

Per and polyfluoroalkyl substances (PFASs) are an important class of organic pollutants. Many diverse PFASs are used in commerce and most are not amenable to conventional targeted chemical analysis due to lack of reference standards. Therefore, methods for elucidating the chemical structure of previously unreported or unexpected PFASs in the environment rely extensively on high-resolution mass spectrometry (HRMS). High-throughput structure identification by HRMS is hindered by a lack of PFAS molecular databases and tandem mass spectral libraries. Here, we report a new approach for generating an environmentally relevant PFAS molecular database constructed from curated structure lists and biotic/abiotic in silico predicted transformation products. Further, we have generated a predicted tandem mass spectral library using computational mass spectrometry tools. Results demonstrate the utility of the generated database and approach for identifying PFASs in HRMS-enabled suspect- and nontarget screening studies.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Simulación por Computador , Fluorocarburos/análisis , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas , Contaminantes Químicos del Agua/análisis
12.
Environ Sci Technol ; 55(2): 1015-1023, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33373200

RESUMEN

The continued growth of the nanotechnology industry and the incorporation of nanomaterials into consumer applications will inevitably lead to their release into environmental systems. Single-walled carbon nanotubes (SWCNTs) in particular have exhibited many attractive optical, mechanical, and electrical properties that lend themselves to new and exciting applications. Assessing their environmental impact upon release into the environment is contingent upon quantifying and characterizing SWCNTs in environmental matrixes. In this study, SWCNTs were isolated from estuarine sediments using density gradient ultracentrifugation (DGU), followed by online flow-through analysis of the density fractions via near-infrared spectroscopy. This approach yielded significant improvements in the quantitative detection limit, from 62 to 1.5 µg g-1. In addition, fractions of the density gradient were also obtained for further analysis by bulk inductively coupled plasma mass spectrometry (ICP-MS) and single-particle ICP-MS. Using fluorescent, semiconductive SWCNTs, the primary fluorescent nanotube fraction was found to be separated from the sediment matrix during DGU; however, the residual metal catalyst particles that had been assumed to be physically bound to the SWCNTs were found to form a separate band in the density gradient apart from the fluorescent SWCNTs. This result was repeated for a number of SWCNT types regardless of the metal catalyst and synthesis method, with a 0.1 g cm-3 density difference between most fractions. The apparent disconnect between the fluorescent fraction of SWCNTs and their metal-containing constituents potentially complicates CNT risk assessment as analysis techniques focusing solely on either CNT fluorescence or metal fingerprints may misrepresent exposure concentrations and their toxicological implications.


Asunto(s)
Nanotubos de Carbono , Catálisis , Espectrometría de Fluorescencia , Espectroscopía Infrarroja Corta , Ultracentrifugación
13.
Environ Int ; 144: 106019, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32818823

RESUMEN

Chronic kidney disease of unknown etiology (CKDu) is an emerging global concern affecting several agricultural communities in the Americas and South Asia. Environmental contaminants such as heavy metals (e.g., Cd, As, Pb, and V) and organic pesticides (e.g., glyphosate) in the drinking water have been hypothesized to play a role in childhood onset and progression of this disease. However, a comprehensive analysis of chemical contaminants in the drinking water and effects of these compounds and their mixtures on kidney development and function remains unknown. Here, we conducted targeted and non-targeted chemical analyses of sediment and drinking water in CKDu affected regions in Sri Lanka, one of the most affected countries. Using zebrafish Danio rerio, a toxicology and kidney disease model, we then examined kidney developmental effects of exposure to (i) environmentally derived samples from CKDu endemic and non-endemic regions and (ii) Cd, As, V, Pb, and glyphosate as individual compounds and in mixtures. We found that drinking water is contaminated with various organic chemicals including nephrotoxic compounds as well as heavy metals, but at levels considered safe for drinking. Histological studies and gene expression analyses examining markers of kidney development (pax2a) and kidney injury (kim1) showed novel metal and glyphosate-metal mixture specific effects on kidney development. Mitochondrial dysfunction is directly linked to kidney failure, and examination of mixture specific mitochondrial toxicity showed altered mitochondrial function following treatment with environmental samples from endemic regions. Collectively, we show that metals in drinking water, even at safe levels, can impede kidney development at an early age, potentiating increased susceptibility to other agrochemicals such as glyphosate. Drinking water contaminant effects on mitochondria can further contribute to progression of kidney dysfunction and our mitochondrial assay may help identify regions at risk of CKDu.


Asunto(s)
Agua Potable , Herbicidas , Insuficiencia Renal Crónica , Niño , Agua Potable/análisis , Herbicidas/toxicidad , Humanos , Riñón/química , Insuficiencia Renal Crónica/inducido químicamente , Sri Lanka
14.
Chemosphere ; 252: 126208, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32229362

RESUMEN

Even though many fungi are known to degrade a range of organic chemicals and may be advantageous for targeting hydrophobic chemicals with low bioavailability due to their ability to secrete extracellular enzymes, fungi are not commonly leveraged in the context of bioremediation. Here we sought to examine the fungal microbiome (mycobiome) at a model creosote polluted site to determine if fungi were prevalent under high PAH contamination conditions as well as to identify potential mycostimulation targets. Several significant positive associations were detected between OTUs and mid-to high-molecular weight PAHs. Several OTUs were closely related to taxa that have previously been identified in culture-based studies as PAH degraders. In particular, members belonging to the Ascomycota phylum were the most diverse at higher PAH concentrations suggesting this phylum may be promising biostimulation targets. There were nearly three times more positive correlations as compared to negative correlations, suggesting that creosote-tolerance is more common than creosote-sensitivity in the fungal community. Future work including shotgun metagenomic analysis would help confirm the presence of specific degradation genes. Overall this study suggests that mycobiome and bacterial microbiome analyses should be performed in parallel to devise the most optimal in situ biostimulation treatment strategies.


Asunto(s)
Creosota/análisis , Sitios de Residuos Peligrosos , Micobioma , Microbiología del Suelo , Contaminantes del Suelo/análisis , Ascomicetos/metabolismo , Bacterias/metabolismo , Biodegradación Ambiental , Microbiota , Hidrocarburos Policíclicos Aromáticos/análisis
15.
Environ Sci Technol ; 54(9): 5700-5709, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32248687

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are widespread in the blood of the general human population, and their bioaccumulation is of considerable scientific and regulatory interest. PFAS exposure resulting from aqueous film-forming foam (AFFF) ingestion is poorly understood due to the complexity of AFFF mixtures and the presence of polyfluorinated substances that may undergo metabolic transformation. C57BL/6 mice were dosed with an AFFF primarily containing electrochemically fluorinated PFASs for 10 days, followed by a 6 day depuration. Urine was collected throughout the study and serum was collected post-depuration. Samples were analyzed via high-resolution mass spectrometry. Relative to the dosing solution, C6 and C7 perfluoroalkyl sulfonates (PFSAs) were enriched in dosed mouse serum, suggesting in vivo transformation of sulfonamide precursors. Some substituted C8 PFSAs [keto-perfluorooctane sulfonate (PFOS), hydrogen-PFOS, and unsaturated PFOS] appeared to be more bioaccumulative than linear PFOS, or were formed in vivo from unidentified precursors. A series of seven peaks in dosed mouse serum was tentatively identified as sulfonimide dimers that were either a minor component of the AFFF or were formed via metabolism of other AFFF components. This work highlights the importance of sulfonamide precursors in contributing to bioaccumulation of AFFF-associated PFSAs and identifies several classes of potentially bioaccumulative novel PFASs that warrant further investigation.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Alcanosulfonatos , Animales , Bioacumulación , Humanos , Ratones , Ratones Endogámicos C57BL , Agua
16.
PLoS One ; 15(3): e0229962, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32150587

RESUMEN

Microplastic fibers (MFs) pollute aquatic habitats globally via sewage release, stormwater runoff, or atmospheric deposition. Of the synthetic MFs, polyester (PES) and polypropylene (PP) are the most common. Field studies show that fish ingest large quantities of MFs. However, few laboratory studies have addressed host responses, particularly at the organ and tissue levels. Adult Japanese medaka (Oryzias latipes), a laboratory model fish, were exposed to aqueous concentrations of PES or PP MFs (10,000 MFs/L) for 21 days. Medaka egested 1,367 ± 819 PES MFs (0.1 ± 0.04 mg) and 157 ± 105 PP MFs (1.4 ± 0.06 mg) per 24 hrs, with PP egestion increasing over time. Exposure did not result in changes in body condition, gonadosomatic- or hepatosomatic indices. PES exposure resulted in no reproductive changes, but females exposed to PP MFs produced more eggs over time. MF exposure did not affect embryonic mortality, development, or hatching. Scanning electron microscopy (SEM) of gills revealed denuding of epithelium on arches, fusion of primary lamellae, and increased mucus. Histologic sections revealed aneurysms in secondary lamellae, epithelial lifting, and swellings of inner opercular membrane that altered morphology of rostral most gill lamellae. SEM and histochemical analyses showed increased mucous cells and secretions on epithelium of foregut; however, overt abrasions with sloughing of cells were absent. For these reasons, increased focus at the tissue and cell levels proved necessary to appreciate toxicity associated with MFs.


Asunto(s)
Oryzias/fisiología , Poliésteres/toxicidad , Polipropilenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Masculino , Oryzias/embriología , Reproducción/efectos de los fármacos
17.
Chem Res Toxicol ; 33(6): 1428-1441, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32129605

RESUMEN

Isopropylated and tert-butylated triarylphosphate esters (ITPs and TBPPs, respectively) are plasticizers and flame retardants that are ubiquitous in indoor environments; however, no studies to date have characterized their metabolism. Using human liver subcellular S9 fractions, phase I and II in vitro metabolism of triphenyl phosphate (TPHP), 4-tert-butylphenyl diphenyl phosphate (4tBPDPP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP), and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) was investigated at 1 and 10 µM doses. Parent depletion and the formation of known or suspected metabolites (e.g., likely hydrolysis or hydroxylated products), including diphenyl phosphate (DPHP), hydroxyl-triphenyl phosphate (OH-TPHP), isopropylphenyl phenyl phosphate (ip-PPP), and tert-butylphenyl phenyl phosphate (tb-PPP), were monitored and quantified via GC/MS or LC-MS/MS. tb-PPP and its conjugates were identified as the major in vitro metabolites of 4tBPDPP and accounted for 71% and 49%, respectively, of the parent molecule that was metabolized during the incubation. While the mass balance between parents and metabolites was conserved for TPHP and 4tBPDPP, approximately 20% of the initial parent mass was unaccounted for after quantifying suspected metabolites of 2IPPDPP and 4IPPDPP that had authentic standards available. Two novel ITP metabolites, mono-isopropenylphenyl diphenyl phosphate and hydroxy-isopropylphenyl diphenyl phosphate, were tentatively identified by high-resolution mass spectrometry and screened for in recently collected human urine where mono-isopropenylphenyl diphenyl phosphate was detected in one of nine samples analyzed. This study provides insight into the biological fate of ITP and TBPP isomers in human tissues and is useful in identifying appropriate biomarkers of exposure to monitor, particularly in support of epidemiological studies.


Asunto(s)
Contaminantes Ambientales/metabolismo , Ésteres/metabolismo , Retardadores de Llama/metabolismo , Hígado/metabolismo , Organofosfatos/metabolismo , Plastificantes/metabolismo , Fracciones Subcelulares/metabolismo , Biotransformación , Niño , Preescolar , Contaminantes Ambientales/orina , Ésteres/orina , Humanos , Organofosfatos/orina
18.
J Hazard Mater ; 378: 120859, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31327574

RESUMEN

Bioremediation is a sustainable treatment strategy which remains challenging to implement especially in heterogeneous environments such as soil and sediment. Herein, we present a novel precision bioremediation framework that integrates amplicon based metagenomic analysis and chemical profiling. We applied this approach to samples obtained at a site contaminated with polycyclic aromatic hydrocarbons (PAHs). Geobacter spp. were identified as biostimulation targets because they were one of the most abundant genera and previously identified to carry relevant degradative genes. Mycobacterium and Sphingomonads spp. were identified as bioaugmentation and genetic bioaugmentation targets, respectively, due to their positive associations with PAHs and their high abundance and species diversity at all sampling locations. Overall, this case study suggests this framework can help identify bacterial targets for precision bioremediation. However, it is imperative that we continue to build our databases as the power of metagenomic based approaches remains limited to microorganisms currently in our databases.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/genética , Biodegradación Ambiental , ADN Bacteriano/genética , Geobacter/metabolismo , Metagenómica , Mycobacterium/metabolismo , Suelo/química , Microbiología del Suelo
19.
Rapid Commun Mass Spectrom ; 33(22): 1683-1694, 2019 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-31245872

RESUMEN

RATIONALE: Approximately 7 million liters of Corexit® dispersants were applied during the 2010 Deepwater Horizon oil spill to facilitate the dispersion of crude oil. At the time of application, the exact chemical composition of Corexit® was relatively unknown. Characterization of Corexit® 9500 was performed using high-resolution mass spectrometry to further understand the complexity of the nonionic surfactant components of this mixture. METHODS: Corexit®9500 was analyzed by ultra-high-performance liquid chromatography (UHPLC) coupled to a high resolution Orbitrap Fusion Lumos mass spectrometer operated in positive electrospray ionization mode and a charged aerosol detector. Chromatographic conditions were optimized to efficiently separate isobaric and isomeric compounds. Polyethoxylated nonionic surfactants in Corexit® 9500 were identified using the following criteria: accurate mass (<3 ppm), retention time, and homologue series; in addition, interpretation of high-resolution tandem mass spectra was used to annotate tentative component structures. RESULTS: More than 2000 polysorbate nonionic surfactants in 87 homologue series were detected. Polysorbate surfactants were characterized by the type of molecular basis group (sorbitan, isosorbide, or fatty acid), degree of esterification (n = 0-4), ester chain length (C6-C24), and ester saturation, in addition to polydispersion by ethoxylation. Isomeric compounds were differentiated by LC/HRMS/MS analysis with product ion assignment. Results from the charged aerosol detector showed that the diesters (23.9 ± 0.78%) were the most abundant component in Corexit® 9500 followed by dioctyl sodium sulfosuccinate (DOSS) (19.2 ± 1.5%), triesters (17.3 ± 1.5%), and monoesters (15.7 ± 2.3%). CONCLUSIONS: Our analytical approach facilitated the characterization of polysorbate surfactants within Corexit® 9500 and allowed a systematic study to differentiate isomeric and isobaric compounds, when standards were not available. The characterized composition of Corexit® 9500 will facilitate future studies to determine the chemical and biological transformation kinetics and byproducts of Corexit® 9500 under environmental conditions.

20.
J Hazard Mater ; 372: 61-68, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29254886

RESUMEN

High concentrations of pesticides enter surface waters following agricultural application, raising environmental and human health concerns. The use of photoreactive nanoparticles has shown promise for contaminant degradation and surface water remediation. However, it remains uncertain how the complexity of natural waters will impact the photodegradation process. Here, we investigate the photoreactivity of titanium dioxide nanoparticles, the capability to degrade the pesticide chlorpyrifos, and the effect of and impact on bacteria during the photodegradation process. Loss of chlorpyrifos in solution resulted solely from photocatalytic oxidation, with 80% degradation observed after 24 h in our reactor, either in the presence or absence of bacteria. Degradation of chlorpyrifos to chlorpyrifos oxon and 3,5,6-trichloro-2-pyridinol was observed via LC/MS-MS and effectively modeled for the given reactor conditions. Bacterial inactivation occurred over 60 min and was not impacted by the presence of chlorpyrifos. The relative affinity of bacteria and chlorpyrifos for the nanoparticle surface decreased the amount of Reactive Oxygen Species (ROS) detected in the bulk by up to 94%, suggesting that ROS measurements in simplified systems may overestimate the reactivity of photoreactive nanoparticles in complex environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...